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ABSTRACT 

Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid 
flow problems. However, for viscous flows, convergence rates often degrade. This is generally due 
to the required use of stretched meshes (i.e. the aspect-ratio AR = Ay/Ax « 1) in order to 
capture the boundary layer near the body. Usual techniques for generating a sequence of grids that 
produce proper convergence rates on isotropic meshes are not adequate for stretched meshes. This 
work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element 
formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and 
results are discussed. 
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Introduction 
Multigrid method has been shown to be successful for solving elliptic problems. This is mainly 
due to its good damping properties which result from two very simple principles. A usual Fourier 
analysis demonstrates that most of the commonly used solvers effectively damp the high frequencies 
of a signal. A low frequency component of a given signal on a fine mesh becomes a high frequency 
on a coarser one. Hence the idea of solving the same problem on a sequence of meshes where 
all frequencies can be damped equally and, if enough grids are available, only a few iterations 
will be required to produce a converged solution (for more details see [1]). Despite these rather 
simple considerations, the multigrid algorithm is complex and difficult to implement. One of 
the difficulties resides in the generation of the sequence of grids for unstructured meshes. The 
convergence properties of the multigrid method depend upon the "quality" of these grids. 

A sequence of meshes may be produced through two different methods. First, starting from 
a mesh that is not too fine but correctly represents the problem, finer meshes may be generated 
through refinement. A global refinement, performed through local subdivision of the triangles of the 
discretization, tends to preserve the geometrical features required to obtain an efficient multigrid 
method. However, this will clearly not be efficient in terms of computational cost. Hence the 
local refinement technique where specific regions of the mesh are refined and then possibly adapted 
[2]. Although this method seems more reasonable, it increases the computational time and the 
complexity of the multigrid algorithm. Another method consists in coarsening an existing fine 
mesh, which has been created to represent accurately the different phenomena to be observed. One 
of the techniques available consists in removing, through a coarsening criterion, a certain number 
of nodes from the initial mesh and to reconnect (retriangulate) the remaining set of nodes. This 
method is especially effective in the case of non stretched meshes [3]. The reconnection usually 
relies on the Delaunay technique [4] that tends to produce the "most equilateral" triangulation 
for the given point distribution and therefore is not easily applicable to stretched meshes. In 
order to avoid retriangulation, the so-called agglomeration technique (see Lallemand et al. [5]), 
is interesting. The generation of coarser meshes consists in the agglomeration, or fusion, of the 
control volumes of the discretization. However, for consistency considerations, when it comes to 
viscous flows, more accurate intergrid transfer operators are required [6, 7]. 

The following study focuses on the 2D Laplace's equation Au(x, y) = 0, since the poor conver- 
gence properties of the multigrid technique, observed when solving the Navier-Stokes equations on 
stretched meshes, also appear for the solution of this simpler equation. The purpose of this work is 
to propose new coarsening strategies that will preserve the convergence rate of the usual isotropic 
multigrid technique. This is defined as a semi-coarsening method. This study will show how this 
process may be extended from the case of regular structured grids to totally unstructured meshes. 

The organization of the paper is as follows: the discretization of the 2D Laplace's equation is 
introduced in Section 1 along with an edge-based data structure. Section 2 recalls the essential 
multigrid convergence properties. The generation of stretched grids is addressed in Section 3. A 
semi-coarsening algorithm, extended to unstructured meshes, is presented in Section 4. Finally, 
numerous experiments are discussed in Section 5. 



1     The Laplace's equation 
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Figure 1: Linear basis function <#. Figure 2: Vertex i and connecting neighbors. 

The problem consists in solving Laplace's equation: 

{Au(x, y) — 0 on 0, convex polygonal domain. 
u = uo on T. 

A Galerkin Finite-Element formulation is used on unstructured triangular meshes. An integration 
by parts results in: 

(1) 

/   Au <pi du =   - /   V« ■ V(fi du +       Vu-n (fi da 
JQi Jüi JTi 

(2) 

where <pi is the linear basis function as depicted in Fig.l. If u is piecewise linear, then the Green 
formula and the notations of Fig.2 result in: 

2A-L 
-1 

1   _ 

2Ai 
(UiUkj + Ukftij - UiUik) 

(3) 

where U{ is the value of the solution u on vertex i, Ax is the area of triangle Ti, n,-j the vector 
normal to the edge [i,j] and of magnitude equal to the length of the edge. Equation (2) can be 
rewritten as: 

/  Au ifi du  =  Yl j (yVi)Ti ■ (Vtt)Ti du =  Y, öT^kj ■ (Vti)r, (4) 

Moreover, for the considered triangle Ti, (3) can be rewritten as: 

(ux)Tl   =   2^- (AuijAyjk - AujkAyji) 
-I1 

(uy)Tl  =   2j- (AuijAxjk - AujkAxji) 

where, Auij = Uj - U{. A similar formulation can be written for triangle T2. In evaluating the 
coefficient for the edge joining vertices i and j, only the triangles Ti and T2 will yield non-zero 
contributions. The final expression of (4) is thus an edge-based formulation: 

(5) 

Au<pi du =  - ]T    ( 
J* 4 edges LV 

'AyikAyjk     AygAyjA        / AxikAxjk     AxyAxji 

A,       +      A2     J  
+  \      Ax       +      A2 

Au^ (6) 



where the sum is taken over all incoming edges for vertex i. The geometrical anisotropy is reflected 
in the coefficient associated with each edge. If the length \\ij\\ increases (the nodes k and I being 
fixed) then, the value of the coefficient decreases. Therefore, considering -the domain ft,- = (J,- T,-, 
the maximum coefficient is associated with the smallest connecting edge and the minimum with 
the longest. 

2     Some definitions and convergence results 
Multigrid theory relies on the use of a sequence of nested meshes for solving (1). These meshes 
represent the different spaces where the equation is discretized. In what follows, only two meshes 
are considered: Hh and HH with H = 2h and HH C%C H^. The discrete problem on the fine 
grid is written as: 

Ahuh  =  0 (7) 

A weighted Jacobi relaxation is considered as the basic iterative process or smoother: 

K+1  =   Shu
n

h    =    (I-uDj;1 Ah)un
h, where Dh  =  (Ah)u (8) 

In order to use both spaces for solving (7) it is necessary to use transfer operators. A linear 
interpolation P : HH —► Hh defines the prolongation operator, and its transpose R — P* : Hh —► 
HH defines the restriction. The 2-Grid iterative operator Mh is then defined by: 

un+1    - h       =   Mhul   =   SZ{I-PAH'RAh)S£ul 
=   {A-h

1-PA-H
lR){AhSl)ul (9) 

with v\ = v pre-relaxations and 1/2 = 0 post-relaxations. 
One very important feature of a multigrid (MG) algorithm is its mesh-independent conver- 

gence. According to Hackbush [8], mesh-independence for elliptic operators, is achieved through 
the smoothing property (||A^5^|| < h~2 r/(i/), where lim^oo r]{y) = 0) and the approximation 
property (HA^1 — PAH

XR\\ = 0(h2)). Because of its nature, the MG algorithm converges linearly 
with respect to the number of MG-cycles. 

Morano et al., in [3], showed that this may also be achieved for the Euler and low Reynolds 
number Navier-Stokes equations where the employed meshes are not stretched. However, when 
highly-stretched elements are used (mandatory for high Reynolds number solutions, see [7] for 
example), this convergence greatly deteriorates with classical fully-coarsened (FC) grids. It is no 
longer linear nor mesh-independent. The deterioration in convergence is also observed when the 
resolution of Laplace's equation is attempted with highly stretched elements, that is, when the 
mesh is anisotropic. 

3    A sequence of grids 
When very stretched elements are used, the damping properties of the smoother are negligible in the 
stretching direction. Thus, using a full-coarsening strategy will certainly not improve the damping 
properties, since the stretching is fully preserved on larger elements. Moreover, the distribution of 
nodes in the stretching direction will correctly represent the low frequencies of the signal, whereas, in 
the direction normal to the stretching, it will represent the high frequencies. Because of the nature 
of the smoothers commonly used, the multigrid technique damps mainly the high frequencies. 
Hence the idea of semi-coarsening in the direction normal to the stretching. 
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Figure 3: Sequence of grids for MSG. 

The semi-coarsening technique is well known and used especially in the structured mesh community. 
For complex geometries, however, multiple directions within the mesh require semi-coarsening. A 
process named Multiple Semicoarsened Grid (MSG) Algorithm was introduced by Mulder [9]. This 
technique relies on the generation of numerous grids that are semi-coarsened (SC) from the finer 
grid in all possible directions as depicted in Fig.3. This ensures proper dissipation of the signal. A 
multigrid scheme is then implemented using all the grids which is complex and costly, especially 
for 3D problems [10]. Moreover, there is no possible extension of this technique to unstructured 
grids. 

The complexity of the usual multigrid technique also relies on the full-coarsening method. 
This technique consists in removing every second vertex in each direction on a regular structured 
mesh, which results in a number of nodes of the coarse grid decreased by a factor 4. The V-cycle 
complexity of such a method tends to 4/3 WUs (a Work Unit corresponds to the computation of 
one residual on the fine grid). The semi-coarsening technique produces coarse grids with a number 
of nodes decreasing by a factor 2 and the overall complexity tends to 2. Therefore, such a method 
will cost more per cycle. However, it will be shown that this technique allows much better damping 
factor than a regular full-coarsening technique in the case of stretched meshes. 

The smoothing property is valid for the weighted Jacobi relaxation scheme applied in this 
study. The effect of the approximation property is emphasized since it determines the mesh- 
independence of the convergence. This property is verified when the discretized subspaces, defined 
by the sequence of coarser meshes, utilized within the MG algorithm are nested. In this paper, the 
sequence of meshes is created through a semi-coarsening technique followed by a retriangulation. 
When this strategy is applied to unstructured meshes, the nestedness of the meshes is rather difficult 
to preserve. The nodes of the coarse grid form a subset of the nodes of the fine grid which produces 
node-nested, but not element-nested, grids. 



a. Fine Grid. b. Fully-Nested Grid. 

Fully-Coarsened (b) - Fully-Nested - Rate = 0.15 
Randomly-Coarsened (c) - Node-Nested - Rate = 0.25 ■ 
Randomly-Coarsened (d) - Node-Nested - Rate = 0.31 ■ 

2 Jacobi Sweeps - Omega = 0.85 
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c. Node-Nested Grid. d. Node-Nested Grid. 

Figure 4: Coarse grid discretizations AR = 1. 

The example depicted in Fig.4 shows how the convergence varies with respect to the nestedness of 
the meshes. A non-stretched 89 node cartesian mesh defines the fine grid (Fig.4.a). The boundary 
conditions are those defined in Section 5. Three different coarse grids are considered. Each of them 
is a node-nested grid and comprises 25 nodes. Fig.4.b shows a usual fully nested grid. Fig.4.c and d 
depict randomly coarsened grids. On the right side of the grid shown in Fig.4.c a few elements are 
not nested. Finally, Fig.4.d depicts a coarsened grid where the elements are anything but nested. 
Two-grid experiments (see Section 5.1) are performed and Fig.4.e depicts the respective convergence 
histories. The convergence rate ranges from 0.15 to 0.31 for such a simple test-case. Therefore, the 
nestedness of the grids is of extreme importance in the quality of the MG performance. Further 
results may be obtained in [11]. 

4    Semi-coarsening and unstructured meshes 
In what follows is presented a semi-coarsening technique that is applicable to unstructured meshes 
as well as to structured meshes. The technique may be seen as a variant of the Algebraic Multigrid 
(see [12]) in the sense that it necessitates a pre-processing stage that relies on the discretization of 



the equation for generating the coarse grids. As mentioned previously, the Galerkin discretization 
of Laplace's equation amounts to a sum over edges. The value of the coefficient associated with 
each edge is determined by the geometry of the surrounding elements (triangles). The smaller the 
length of the edge, the larger the value of the coefficient. The semi-coarsening technique proceeds 
as follows: once a node is selected to remain on the coarse grid, its neighbors must be scanned 
to determine which one of them has to be removed. The removed node corresponds to the edge 
associated with the largest coefficient. The algorithm is two-fold. First, it has to go through the 
mesh and select the nodes to remain on the coarse grid, and, second, for each selected node, it has 
to determine which of its neighbors is to be removed. The setup employed for coarsening is the 
same as that used for agglomeration in [13, 7]. 

Unstructured meshes for high-Reynolds number flow computations are essentially comprised of 
two regions: one where the aspect-ratio is (very) small, where the viscous effects are dominant, 
and another one, where the aspect-ratio is close to 1, far from the viscous effects (the farfield for 
example). In order to preserve the low complexity of an MG algorithm it might be desirable to 
perform the semi-coarsening only in the low aspect-ratio region, whereas a full-coarsening may 
be applied elsewhere. Again, this is similar to an Algebraic Multigrid as described in [12]. This 
should provide a slightly better complexity than the one obtained through semi-coarsening only. 

The algorithm is written as: 

1. For each node i on the fine grid the average and maximum values of the coefficients coefc of 
its connecting edges are computed: avgi and maxi. 

2   The parameter 3 = — V"  provides an indication of the anisotropy. 
N fr[ avgi 

3. The determination, through a heaplist, of the vertex jpick that remains on the coarse grid 
is then performed. 

4. The removal of the connecting neighbor(s) of jpick is achieved through a coarsening criterion. 

5. Goto [3]. 

The heaplist serves as an advancing front. The starting point of the front will determine the quality 
of the subset of nodes which constitute the coarse grid. Since semi-coarsening consists in removing 
every second vertex in the direction normal to the stretching, it is expected that the advancing 
front should be initiated from the region comprising the lowest aspect-ratio elements (the surface 
of an airfoil for example). Therefore, the following items are incorporated: 

• Technical programming considerations make the front start first with the boundaries. 

• The body and farfield extrema are retained on the coarse grid in order to preserve the general 
geometry of the discretized domain. 

• The heaplist is determined by a "key-function" [14]. This "key-function" is defined by the 
connecting distance (minimum number of edges) to the boundary (or region where the aspect- 
ratio is minimum) of the unprocessed vertex (not in the front). The result is a list of edges 
where the first edge is associated with the minimum distance and jpick is its unprocessed 
vertex. 

Once a node is selected to remain on the coarse grid, a semi-coarsening criterion determines which 
of the connecting neighbors of jpick is to be removed: 



1- nbmax is defined by the maximum number of nodes to be deleted: 
if maxjpick  >  ß avgjpick    then    nbmax = 1 (Semi-Coarsening), 

else     nbmax = 3 (Full-Coarsening). 

2. The array Listjpick contains the available unprocessed neighbors. 
ndeii the number of deleted nodes, is set equal to 0. 

3. The determination of the available local maximum coefficient is performed: locmax =     max   (coefi) 
ifzListjpick 

4. A node i € Listjpick is removed if: coefi = locmax and locmax > avgjpick. That is if its value 
is equal to the maximum local coefficient and if this maximum is greater than the average 
value of all the surrounding coefficients. 

5. The array Listjpick is updated along with the number of deleted nodes {ridel <— n<iel + 1) 
li ridel  <  nbmax goto [3]. 

This algorithm clearly provides a semi/full-coarsening (S/FC) technique. Yet, if appropriate, 
the algorithm only performs semi-coarsening or full-coarsening. Such an algorithm may be applied 
to unstructured meshes as well as to structured meshes provided the considered discretization relies 
on an edge-based data structure. This algorithm relies on the discretization of the equation to be 
solved rather than on simple geometrical considerations. 

a. Delaunay - Max Min. b. Min Max - Variant. 

Figure 5: Retriangulation techniques. 

Once the subset of nodes of the fine grid is obtained after coarsening, it needs to be retriangulated. 
The reconnection relies here on a Delaunay method. This method has proved useful and efficient 
when used in conjunction with equilateral triangle types of meshes. The coarsening technique 
utilizing such an algorithm was introduced in [15]. Unfortunately, this method does not apply to 
highly stretched meshes. It usually results in a poor reconnection in the region where the nodes 
of the mesh are not regularly distributed. In order to overcome this difficulty, an edge-swapping 
technique may be employed [16,17]. The Delaunay reconnection of a set of four nodes results in two 
triangles where the minimum angle is maximized (Fig.5.a). In lieu of preserving this connectivity it 
is possible to swap the edges by minimizing the maximum angle of the two triangles (Fig.5.b). This 
technique has proved very efficient when used with an advancing front technique for generating 
meshes, and is thus employed for the unstructured test-case in this paper. The reconnection of the 
structured coarse grids are performed through the usual Delaunay method. 

5    Results and comments 
In order to validate the previous concept, various test-cases are performed for solving the Laplace's 
equation. Results are presented on structured and unstructured meshes. The discretization domain 
for the structured cases is defined by a square of surface 1, while the unstructured case is defined 



by a pentagon plunged in an unstructured mesh. A non-stretched structured test-case serves as the 
standard test-case since it provides the best MG convergence. The relaxation parameter u> is equal 
to 0.85 and no optimization is performed here. Two sweeps are performed on the fine grid. The 
transfer operators are linear and were introduced in [18]. All cases are performed with Dirichlet 
boundary conditions. For the structured test-cases they are defined by u(0,x) = 1, u(x,l) = 2, 
u(l, x) = 3 and u(x, 0) = 4, and for the unstructured case they are equal to -1 on the body and to 
1 on the farfield. For all test-cases, the different grids used are presented along with the convergence 
histories of the various schemes. The convergence histories depict the logarithm of the norm of the 
normalized residual with respect to the number of cycles. This convergence is carried over until a 
residual decrease on the fine grid equal to 10~10 

5.1    Two-Grid experiments 
These experiments require a residual decrease on the coarse grid equal to 10~10. The semi- 
coarsening-only (nbmax = 1) option of the algorithm is used for the generation of the coarse grids. 

Non-stretched Meshes. The aspect-ratio is equal to one and the grids are fully-nested. The 
fine and coarse grid, respectively, are similar to those depicted in Fig.4.a and b with 4225 (65 x 
65) and 1089 (33 x 33) nodes, respectively . The coarse-grid is a manually (M) fully-coarsened grid 
(i.e. the coarsening algorithm is not involved). No anisotropy is encountered here and a solution is 
obtained after 12 cycles which corresponds to a convergence rate of 0.15. 



a. 4257 Node Fine Grid. b. 1105 Node FC Grid (M). c. 2145 Node SC Grid (M). 

d. 2145 Node SC Grid (C). 
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Figure 6: Linear Meshes - AR = 1/4. 

Linear Meshes. A 4257 (33 x 129) node fine grid is built (Fig.6.a) where the distribution of 
nodes is linear in the vertical (normal to the stretching) direction and the aspect-ratio is equal 
to 1/4. Three types of coarser meshes are presented. In Fig.6.b is depicted a manually fully- 
coarsened 1105 (17 x 65) node coarse grid, that represents the classical coarsening technique. In 
Fig.6.c and d are depicted two semi-coarsened grids. The first grid is obtained manually through a 
vertical semi-coarsening in a 2145 (33 x 65) node coarse grid. The second grid is the result of the 
coarsening algorithm (C) applied to the fine grid. It is a 2145 node coarse grid. The triangulations 
of the two semi-coarsened grids appear to be different while the subset of nodes are the same. 
Yet, similar convergences are expected. Fig.6.e are depicted the various convergence histories. The 
full-coarsening technique results in a convergence rate of 0.77 while the semi-coarsening techniques 
provide both a convergence rate equal to 0.15, which is identical to the convergence rate of the 

non-stretched test-case. 



d. 2141 Node SC Grid (C) 

w 
Nuftiber of Cycles 

0 30 5 10 15 20 25 
e. Resulting Convergence Histories. 

Figure 7: Exponential Meshes - AR = 2.4 x 10-4. 

Exponential Meshes. A 4257 (33 x 129) node fine grid is depicted in Fig.7.a. The distribution 
of nodes is exponential in the vertical direction. The minimum aspect-ratio is equal to 2.4 x 10-4 

and the maximum to 2.2. This grid is manually fully-coarsened which produces a 1105 (17 x 65) 
node coarse grid (Fig.7.b). A manually vertically semi-coarsened 2145 (33 x 65) node coarse grid is 
depicted in Fig.7.c. Where the stretching follows the horizontal direction (where the distribution of 
nodes is more dense) this technique will provide the expected result, while the stretching deteriorates 
in the vertical direction (where the distribution of nodes is less dense). A 2141 node coarse grid 
obtained with the coarsening algorithm is depicted in FigJ.d. In this case the coarsening follows 
the direction normal to the stretching everywhere in the mesh as can be seen in the less dense 
region. The full-coarsening technique results in a 0.80 convergence rate (Fig.7.e). The manually 
semi-coarsened grid proves to have a much better convergence rate of 0.28, but the best convergence 
rate of 0.20 corresponds to the automatically semi-coarsened grid. Moreover, the vertically semi- 
coarsened grid shows a change of slope at the end of the convergence. This means that the MG 
algorithm does not perform optimaly and does not damp low frequencies correctly, whereas the code 
semi-coarsened grid provides a linear-type of convergence rate. Therefore, and although both semi- 
coarsened grids have similar numbers of nodes, the coarse grid obtained through the automated 
coarsening algorithm results in more optimal convergence. 

10 



a. 4225 Node Fine Grid. b. 1089 Node FC Grid (M). c. 2145 Node SC Grid (M). 

d. 2115 Node SC Grid (C). 
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Figure 8: Chebyshev Meshes - AR = 0.024. 
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Chebyshev Meshes. A 4225 (65 x 65) node fine grid is built where the distribution of nodes is 
a cosine function in both directions. The minimum aspect-ratio is equal to 0.024 and the maximum 
to 40.73 (Fig.8.a). This grid comprises stretched and non-stretched elements. The minimum aspect- 
ratio cells are essentially located on the boundary of the domain, while the maximum aspect-ratio 
cells are located in the bisectors and in the middle of the domain. A manually fully coarsened 1089 
(33 x 33) node grid is depicted in Fig.8.b. Although no natural manual semi-coarsening technique 
applies here, an horizontally semi-coarsened 2145 node (33 x 65) coarse grid is built for comparison 
purposes (Fig.8.c). The coarsening algorithm resulted in a 2115 node coarse grid (Fig.8.d). It is 
again obvious that the semi-coarsening follows the direction normal to the stretching, each region 
being clearly separated by the bisectors. The fully-coarsened grid provided a convergence rate 
of 0.50, and 0.30 was achieved with the manually horizontally semi-coarsened grid (Fig.8.e). A 
linear type of convergence resulting in a convergence rate of 0.12 was achieved with the code semi- 
coarsened grid. It is interesting to note that, despite the similar number of nodes shared by the 
manually horizontally semi-coarsened grid and the code semi-coarsened grid, they provided different 
results, and therefore the good convergence rate of the code semi-coarsening technique cannot be 
attributed solely to the number of nodes on the coarse grid. 

11 



5.2    Multigrid experiments 
In this section, multigrid experiments are explored in order to demonstrate the robustness of the 
algorithm in producing a sequence of grids that permit efficient MG convergence. The number 
of grids will vary according to the test-case. Two sweeps of the Jacobi relaxation are performed 
on each level and W-cycles are employed since they provide a better resolution of the coarse grid, 
resulting in better convergence rates. A structured Chebyshev and an unstructured test-case are 
performed with both semi and semi/full-coarsening techniques. 

a. 16641 Node Fine Grid. b. 8324 Node SC Grid. 

1 

c. 5968 Node S/FC Grid. 

I &K gJfeftSSfc Ä1"*BÄ 

d. SC Region. 
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f. Resulting Convergence Histories. 

Figure 9: Multigrid Chebyshev Meshes - AR = 0.012. 
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The Chebyshev test-case. A 16641 (129 x 129) node fine grid is constructed with a minimum 
aspect-ratio value of 0.012 and a maximum value of 81.50 (Fig.9.a). The semi-coarsening option 
provides a sequence of 7 grids comprising 16641, 8324 (shown Fig.9.b), 4329, 2289, 1211, 652 and 
352 nodes, and the semi/full-coarsening technique a sequence of 6 grids comprising 16641, 5968 
(shown Fig.9.c), 2494, 1036, 429 and 180 nodes. The respective W-cycle complexities are equal 
to 11 and 5.5 WUs. The region where the algorithm performs the semi-coarsening is depicted 
nodewise in Fig.9.d, while Fig.9.e shows where the full-coarsening is applied. It is clear that the 
semi-coarsening is applied to the highly stretched element region as expected. The semi-coarsening 
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technique results in a standard-like convergence rate of 0.15 (Fig.9.f). When used only with 6 
grids, this technique requires the coarsest grid to be converged completely otherwise the process 
abruptly stalls at some low residual value. Despite a convergence rate of 0.29, its complexity would 
favor the semi/full-coarsening technique. Yet, mesh-independent convergence is the purpose of 
this study, and is only achieved with the semi-coarsening technique. The slightly poorer type of 
convergence associated with the semi/full-coarsening technique may be explained by the quality of 
the triangulation of the coarse grid. Full-coarsening in non-stretched regions tends to deteriorate 
the relative difference of aspect-ratio between the highly and non-stretched regions. This results in 

much more irregular grids than those obtained with the semi-coarsening technique alone. Moreover, 
the addition of a 7th grid, or even converging the coarsest level, does not change the convergence. 

0.98 1.00 1.02 
e. Right Upper Comer. 

1.98 2.00 2.02 
f. Wake Region. 

Figure 10: Multigrid Unstructured - Full-Coarsening - AR = 3.7 x 10 -5 

The unstructured test-case. In this case (Fig.lO.a), a grid-spacing Ay = 10~6 on the body 
results in an average minimum aspect-ratio of 3.7 x 10~5. In Fig.lO.e and f are depicted the zoom 
of the right upper corner and of the wake region respectively in order to show the different type 
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of stretched and non-stretched elements that appear in these meshes. A first sequence of 4 fully- 

coarsened meshes is manually constructed. The number of nodes for each level are: 19366, 4955, 
1270 and 335. These meshes are depicted in Fig.lO.a to Fig.lO.d. The complexity of a W-cycle is 

equal to 3.2 WUs. 

a. 9983 Node SC Grid. b. 5189 Node SC Grid. c. 2724 Node SC Grid. d. 1717 Node SC Grid. 

Y\i\i 

TCTC 

^ 

\/]2 
•/\.   .A.   .A  . /\. .   .   .   .   p 

e. 1044 Node SC Grid. f. 589 Node SC Grid. 
9 10 11 

g. Retriangulated Fine Grid. 
8 9 in 

h. Original Fine Grid. 

Figure 11: Multigrid Unstructured - Semi-Coarsening - AR - 3.7 x 10 5. 

The second sequence is obtained with the semi-coarsening technique only. There are 7 meshes 
that have 19366, 9983, 5189, 2724, 1717, 1044 and 589 nodes (Fig.ll.a to Fig.ll.f). The W-cycle 
complexity is equal to 12.5 WUs. The last sequence of meshes results from the semi/full-coarsening 

technique and provides 6 meshes (Fig.l2.a to Fig.l2.e): they comprise 19366, 8015, 3538, 1668, 
916 and 462 nodes, resulting in a 6.9 WU W-cycle complexity. SC and S/FC methods required all 
coarse point sets to be retriangulated using the Min-Max Delaunay variant. In order to maintain 
favorable convergence rates, it was found that the fine grid needed to be retriangulated according 
to the same technique. This can partially be explained by the quality of the nestedness of all the 
grids as seen in Section 3. The difference between the original and retriangulated fine grids are 

mostly confined to wake regions, as illustrated in Fig.ll.g and h. 
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a. 8015 Node S/FC Grid. b. 3538 Node S/FC Grid. c. 1668 Node S/FC Grid. d. 916 Node S/FC Grid. 

le-10 ■ 
e. 462 Node S/FC Grid 

Jr ds (SQ - Cmplxt = 12.5 WU- Rate = 0.23 
Jrids S$C - Cmplxt = 6.9 WU - Rate = 0.48 ?!j- >**) -Cmplxt. = 3.2 WU - Rate = 0.80 

10 15 20 25 30 
f. Resulting Convergence Histories. 

Figure 12: Multigrid Unstructured - Semi/Full-Coarsening - AR = 3.7 x 10~5. 

Converging the coarsest grid of the sequence of either fully-coarsened or semi/fully-coarsened grids 
does not change the convergence rates equal to 0.80 and 0.48 respectively (Fig.l2.f). This indi- 
cates that the use of an additional coarser grid would not change the convergence. Besides, the 
retriangulation of the sequence of the fully-coarsened grids does not change the convergence rate of 
the MG algorithm, whether or not the coarsest grid is converged. The semi/fully-coarsened grids 
provide a clear improvement with respect to the usual fully-coarsened grids. Yet, the convergence 
history demonstrates two changes of slope during the convergence. The last change of slope clearly 
shows that no further convergence is expected beyond a 10-10 residual decrease. This indicates that 
the MG algorithm does not efficiently damp all low frequencies. Finally, the semi-coarsening MG 
algorithm, despite the addition of a seventh grid that considerably increases complexity, achieves 
a convergence rate of 0.23. 
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le-10 

5 10 15 

Figure 13: Significant Results. 

Concluding remarks 
In Fig.13 are gathered the most significant results. They are separated in two different subsets. 
Curves 1 and 2 represent the spectrum of convergences within which the other convergence histories 
must fit. Indeed, curve 1 shows the best convergence and curve 2 shows what is expected when 
the discretization subspaces are only node-nested. All other curves depict the convergence histories 
of the various test-cases that employ the semi-coarsening algorithm. The problem to be solved 
is the same for all test-cases, only the geometries of the discretized spaces differ. The results are 
straight lines with similar slopes that fall within the predicted range. The difference of slopes 
may be explained by two essential reasons. First, the boundary conditions of the structured and 
unstructured test-cases differ. It is not possible, due to the geometry, to transpose exactly the 
same boundary for both types. Then, it has been shown that the nestedness of the subspaces 
influences the quality of the convergence. It cannot be expected that the unstructured grids be 
completely nested. On the other hand the quality of the triangulation per grid may also damage 
the convergence. 

In this paper, a new semi-coarsening algorithm relying on the discretization of the equation, 
which should enable flexible applications, has been introduced. Convergence rates for highly 
stretched unstructured meshes have been obtained similar to those for standard cartesian struc- 
tured non stretched meshes. Finally, linear, hence mesh independent, convergence rates have been 
demonstrated. The extension of these unstructured semi-coarsening techniques to the resolution of 
the Navier-Stokes equations is planned in the near future. 
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